36,252 research outputs found

    Surface-wave solitons on the interface between a linear medium and a nonlocal nonlinear medium

    Full text link
    We address the properties of surface-wave solitons on the interface between a semi-infinite homogeneous linear medium and a semi-infinite homogeneous nonlinear nonlocal medium. The stability, energy flow and FWHM of the surface wave solitons can be affected by the degree of nonlocality of the nonlinear medium. We find that the refractive index difference affects the power distribution of the surface solitons in two media. We show that the different boundary values at the interface can lead to the different peak position of the surface solitons, but it can not influence the solitons stability with a certain degree of nonlocality.Comment: 8 pages, 14 figures, 15 references, and so o

    Cancellation of divergences in unitary gauge calculation of HγγH \to \gamma \gamma process via one W loop, and application

    Full text link
    Following the thread of R. Gastmans, S. L. Wu and T. T. Wu, the calculation in the unitary gauge for the HγγH \to \gamma \gamma process via one W loop is repeated, without the specific choice of the independent integrated loop momentum at the beginning. We start from the 'original' definition of each Feynman diagram, and show that the 4-momentum conservation and the Ward identity of the W-W-photon vertex can guarantee the cancellation of all terms among the Feynman diagrams which are to be integrated to give divergences higher than logarithmic. The remaining terms are to the most logarithmically divergent, hence is independent from the set of integrated loop momentum. This way of doing calculation is applied to HγZH \to \gamma Z process via one W loop in the unitary gauge, the divergences proportional to MZ2/M3M_Z^2/M^3 including quadratic ones are all cancelled, and terms proportional to MZ2/M3M_Z^2/M^3 are shown to be zero. The way of dealing with the quadratic divergences proportional to MZ2/M3M_Z^2/M^3 in HγZH \to \gamma Z has subtle implication on the employment on the Feynman rules especially when those rules can lead to high level divergences. So calculation without integration on all the δ\delta functions until have to is a more proper or maybe necessary way of the employment of the Feynman rules.Comment: 1 figure, 34 pages (updated
    corecore